

Minix

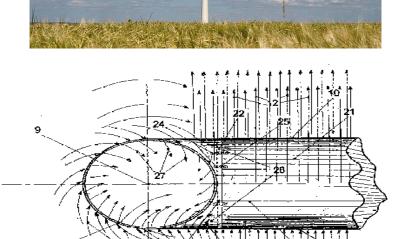
Presentation on increasing Wind Turbine energy efficiency: a new technology device for use in the Wind Turbine Power industry

"increasing the energy output of wind turbines"

Christian Hugues (Inventor) christian.hugues@minix.fr

Michael Hobbs (Speaker) m.hobbs@hawkinformation.com

- Introductions
- What is it?
- Where can it be used?
- Why is it important?
- When can it be used?
- How can it be used?
- Market overview
- Testing
- Conclusions


Introduction to the team

- Hawk Associates (commercial)
- X,Y,Z Prototypes (manufacturing)
- Mr Hugues (inventor and owner of the Minix technology)

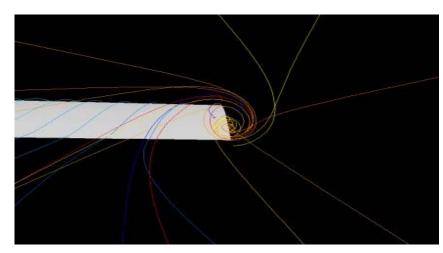
Minix. What is it?

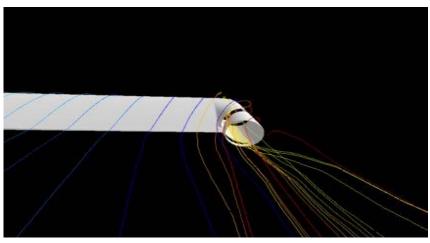
- A device that renders a wind turbine blade more efficient
- A technology originally developed for aircraft wingtips
- Successfully tested at Mach 0.8
- A device designed to reduce induced drag and alleviate the vortex

 Technology protected by patents

Where can it be used?

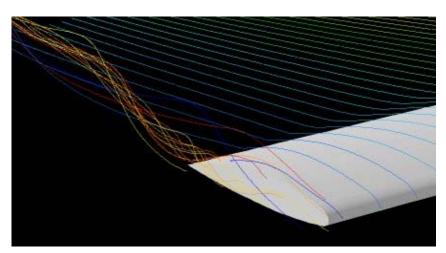
- Minix can be adapted to fit any airfoil
- Wind turbine, aircraft, helicopter blade, hydrofoil, F1 racing car....
- Applied to the tip of a blade
- On-shore or off-shore wind turbines
- Practical for new build machines or retrofit

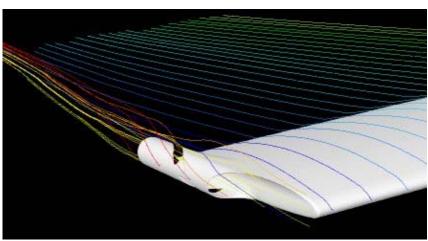




Why is it important? Benefits?

- Reduces induced drag on leading edge of wind turbine blade
- Results in an average gain of 14% in annual electricity production (independent, 3rd party results)
- Cost-effective method of increasing wind turbine power output
- Alternatively, used to reduce material costs (smaller blade length for same output)





Why is it important? Benefits?

- Capable of reducing noise and vibrations on tower (environmental and mechanical impact)
- Increased efficiency per square metre for wind farms
- Axis commences turning at lower wind speeds

When can it be used?

- Minix is a tested and proven technology ready for production
- International patents for Minix
 N° 1 and N° 2
- Retrofit for existing wind turbines or wind farms, on or off shore

When can it be used?

- Integral part of design for new projects
- Helps all types of horizontal or vertical wind turbines
- Easily shipped pre-packaged or manufactured locally

Who is concerned?

- Operators and users of wind power (horizontal, vertical, on-shore, off-shore)
- Wind turbine manufacturers required to meet growing demand
- Wind farm project managers requiring a competitive edge
- Wind turbine mechanics, engineers and designers
- Government authorities required to meet renewable energy targets
- Technology strategy advisors in renewable energy sector
- Financial backers and investment companies looking for quicker return on investment
 All Rights Reserved / 2009

How can it be used?

- Minix device is lightweight and durable (successfully tested on aircraft) and easily manufactured
- Easily fitted to the tip of the wind turbine blade
- Simple process of adapting the profile, creating the blade specific device and attaching it to the machine
- Design work includes the process of bolting on the device
- Designed from 'scratch' as part of the blade or easily retrofitted on site

Market Overview

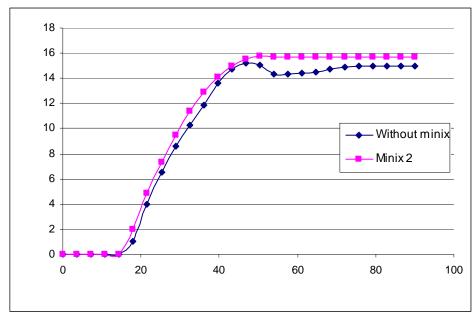
- Renewable energy undergoing massive investment and change
- Government obligations to meet targets of CO2 reduction and wind power output
- Current demand is outstripping supply capability
- More and more Wind Turbines being built around the globe

Market overview

- Brings a viable and commercially available solution that improves energy output
- Innovative, market first
- Competitive edge to manufacturers
- Helps to meet client demand requirements
- Robust and sleek design

Testing: Wind Turbine Results Minix 2

Wind Turbine Power Curve :


Speed	Speed	Power		Production	
m/s	km/h	Without minix	Minix 2	Without minix	Minix 2
	0	0 (0	0	0
	1 3,	6 (0	0	0
	2 7,	2 (0	0	0
	3 10,	8 (0	0	0
	4 14,	4 (0	0	0
	5 1	8 1	1,9855	0,139	0,275
	6 21,	6	4,8216	0,491	0,591
	7 25,	2 6,5	7,3309	0,648	0,731
	8 28,	8 8,6	9,5134	0,646	0,715
	9 32,	4 10,3	11,3691	0,543	0,599
1	0 3	6 11,9	12,898	0,411	0,446
1			14,1001	0,289	0,299
1:		2 14,72	14,9754	0,180	0,183
1	3 46,	8 15,2	15,5239	0,100	0,103
1	4 50,	4 15,06	15,7456	0,051	0,053
1	5 5	4 14,3	15,7	0,023	0,025
1	6 57,	6 14,3	15,7	0,010	0,011
1	7 61,	2 14,4	15,7	0,004	0,005
1	8 64,	8 14,5	5 15,7	0,002	0,002
1	9 68,	4 14,7	7 15,7	0,001	0,001
2	0 7	2 14,9	15,7	0,000	0,000
2					
2	2 79,	2 15	5 15,7	0,000	0,000
2	3 82,	8 15	5 15,7	0,000	0,000
2	4 86,	4 15	15,7	0,000	0,000
2	5 9	0 15		0,000	0,000

Start speed	5	m/s
Cut out speed	25	m/s

Rédaction		
Alain FRYDMAN	TECHNI PROCESS	visa

Wind Turbine Power Curve

Power / Speed

RESULTS			
Calculated production of electricity	Without Minix	Minix 2	
Average power output	3,5	4,0	kW
Daily production	84,9	96,9	kW.h
Monthly production	2 582	2 948	kW.h
Annual production	30 987	35 379	kW.h
Gain		14%	

Rédaction		
Alain FRYDMAN	TECHNI PROCESS	visa

Conclusions

- Who? Mr Christian Hugues, inventor of the Minix device and Hawk Associates, representing the commercial interests of the technology
- What? A new device that when fitted to the tip of a turbine blade (or any airfoil) reduces the induced drag
- Why? To make wind turbines more efficient. Saving money, reducing CO2 and material costs

- Where? French based company with worldwide market reach. Patented technology in France, Europe, US, Canada, Israel, etc....
- When? The technology exists now. Successful testing performed in the Wind Turbine sector

 How? Commercial application and integration is now possible. Visit us at Stand F2.

Conclusions

- Questions?
- Comments?

Come and visit us to find out more information on Stand F2

CONTACTS

Christian Hugues (Inventor) christian.hugues@minix.fr

Michael Hobbs (Speaker) m.hobbs@hawkinformation.com